Inverse of Elementary Matrices

Elementary Row Operation

- Every elementary row operation can be performed by matrix multiplication.
- 1. Interchange

elementary matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]
$$

- 2. Scaling

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & \mathrm{k}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
k c & k d
\end{array}\right]
$$

- 3. Adding k times row i to row j :

$$
\left[\begin{array}{ll}
1 & 0 \\
\mathrm{k} & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
k a+c & k b+d
\end{array}\right]
$$

Elementary Matrix

- Every elementary row operation can be performed by matrix multiplication.
- How to find elementary matrix?

elementary matrix

E.g. the elementary matrix that exchanges the $1^{\text {st }}$ and $2^{\text {nd }}$ rows

$$
\begin{aligned}
& E\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]=\left[\begin{array}{ll}
2 & 5 \\
1 & 4 \\
3 & 6
\end{array}\right] \quad E\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \longrightarrow E=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Elementary Matrix

- How to find elementary matrix?
- Apply the desired elementary row operation on Identity matrix

Exchange the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows

Multiply the $2^{\text {nd }}$ row by -4
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Adding 2 times row 1 to row 3

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \longmapsto E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

Elementary Matrix

- How to find elementary matrix?
- Apply the desired elementary row operation on Identity matrix

$$
\begin{array}{rll}
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] & E_{1} A= & E_{1}
\end{array}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Inverse of Elementary Matrix

Reverse elementary row operation

Exchange the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Exchange the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows

$$
E_{1}^{-1}=[
$$

$$
1
$$

Multiply the $2^{\text {nd }}$ row by -4

$$
E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Multiply the $2^{\text {nd }}$ row by $-1 / 4$

$$
E_{2}^{-1}=[
$$

$$
1
$$

Adding 2 times row 1 to row 3
Adding -2 times row 1 to row 3

$$
E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \quad E_{3}^{-1}=[
$$

RREF v.s. Elementary Matrix

- Let A be an mxn matrix with reduced row echelon form R.

$$
E_{k} \cdots E_{2} E_{1} A=R
$$

- There exists an invertible $m \times m$ matrix P such that PA=R

$$
\begin{gathered}
P=E_{k} \cdots E_{2} E_{1} \\
P^{-1}=E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}
\end{gathered}
$$

Invertible

An $n \times n$ matrix A is invertible.

The reduced row echelon form of A is I_{n}

A is a product of elementary matrices

